
From Smile to Tears: Emotional StampedLock
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

1

From Smile To Tears:
Emotional StampedLock

Dr Heinz M. Kabutz
Last updated 2013-11-05

From Smile to Tears: Emotional StampedLock
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Heinz Kabutz
 Author of The Java Specialists' Newsletter

– Articles about advanced core Java programming

 http://www.javaspecialists.eu

2

From Smile to Tears: Emotional StampedLock
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Why Synchronizers?

3

From Smile to Tears: Emotional StampedLock
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Why Synchronizers?
 Synchronizers keep shared mutable state

consistent
– Don't need if we can make state immutable or unshared

 Some applications need large amounts of state
– Immutable could stress the garbage collector
– Unshared could stress the memory volume

4

From Smile to Tears: Emotional StampedLock
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Coarse Grained Locking
 Overly coarse-grained locking means the CPUs are

starved for work
– Only one core is busy at a time

 Took 51 seconds to complete

5

From Smile to Tears: Emotional StampedLock
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

"Good" And "Bad" Context Switches
 "Good" Context Switch

– Thread has used up its time quantum and can be swapped
out by the OS in a single clock cycle

– Also called "Involuntary" context switch

 "Bad" Context Switch
– Executing thread needs to stop because it cannot acquire

a resource held by another suspended thread
– Also called "Voluntary" context switch
– Can cost tens of thousands of clock cycles

6

From Smile to Tears: Emotional StampedLock
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Fine Grained Locking
 "Synchronized" causes "bad" context switches

– Thread cannot get the lock, so it is parked
• Gives up its allocated time quantum

 Took 745 seconds to complete

 It appears that system time is 50% of the total time
– So should this not have taken the same elapsed time as

before?

7

From Smile to Tears: Emotional StampedLock
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Independent Tasks With No Locking
 Instead of shared mutable state, every thread uses

only local data and in the end we merge the results

 Took 28 seconds to complete with 100% utilization

8

From Smile to Tears: Emotional StampedLock
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Nonblocking Lock-free Algorithms
 Lock-based algorithms can cause scalability issues

– If a thread is holding a lock and is swapped out, no one
can progress

– Amdahl's and Little's laws explain why we can't scale

 Definitions of types of algorithms
– Nonblocking: failure or suspension of one thread, cannot

cause another thread to fail or be suspended
– Lock-free: at each step, some thread can make progress

9

From Smile to Tears: Emotional StampedLock
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

StampedLock

10

From Smile to Tears: Emotional StampedLock
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Motivation For StampedLock
 Some constructs need a form of read/write lock

 ReentrantReadWriteLock can cause starvation
– Plus it always uses pessimistic locking

11

From Smile to Tears: Emotional StampedLock
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Motivation For StampedLock
 StampedLock provides optimistic locking on reads

– Which can be converted easily to a pessimistic read

 Write locks are always pessimistic
– Also called exclusive locks

 StampedLock is not reentrant

12

From Smile to Tears: Emotional StampedLock
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Read-Write Locks Refresher
 ReadWriteLock interface

– The writeLock() is exclusive - only one thread at a time
– The readLock() is given to lots of threads at the same time

• Much better when mostly reads are happening
– Both locks are pessimistic

13

From Smile to Tears: Emotional StampedLock
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Account With ReentrantReadWriteLock
public class BankAccountWithReadWriteLock {
 private final ReadWriteLock lock =
 new ReentrantReadWriteLock();
 private double balance;
 public void deposit(double amount) {
 lock.writeLock().lock();
 try {
 balance = balance + amount;
 } finally { lock.writeLock().unlock(); }
 }
 public double getBalance() {
 lock.readLock().lock();
 try {
 return balance;
 } finally { lock.readLock().unlock(); }
 }
}

14

The cost overhead
of the RWLock

means we need at
least 2000

instructions to
benefit from the

readLock() added
throughput

From Smile to Tears: Emotional StampedLock
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

ReentrantReadWriteLock Starvation
 When readers are given priority, then writers might

never be able to complete (Java 5)

 But when writers are given priority, readers might
be starved (Java 6)

 http://www.javaspecialists.eu/archive/Issue165.html

15

From Smile to Tears: Emotional StampedLock
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Java 5 ReadWriteLock Starvation
 We first acquire some read locks

 We then acquire one write lock

 Despite write lock waiting, read
locks are still issued

 If enough read locks are issued,
write lock will never get a chance
and the thread will be starved!

16

From Smile to Tears: Emotional StampedLock
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

ReadWriteLock In Java 6
 Java 6 changed the policy

and now read locks have to
wait until the write lock has
been issued

 However, now the readers
can be starved if we have
a lot of writers

17

From Smile to Tears: Emotional StampedLock
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Synchronized vs ReentrantLock
 ReentrantReadWriteLock, ReentrantLock and

synchronized locks have the same memory
semantics

 However, synchronized is easier to write correctly
synchronized(this) {
 // do operation
}

rwlock.writeLock().lock();
try {
 // do operation
} finally {
 rwlock.writeLock().unlock();
}

18

From Smile to Tears: Emotional StampedLock
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Bad Try-Finally Blocks
 Either no try-finally at all

rwlock.writeLock().lock();
// do operation
rwlock.writeLock().unlock();

19

From Smile to Tears: Emotional StampedLock
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Bad Try-Finally Blocks
 Or the lock is locked inside the try block

try {
 rwlock.writeLock().lock();
 // do operation
} finally {
 rwlock.writeLock().unlock();
}

20

From Smile to Tears: Emotional StampedLock
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Bad Try-Finally Blocks
 Or the unlock() call is forgotten in some places

altogether!

rwlock.writeLock().lock();
// do operation
// no unlock()

21

From Smile to Tears: Emotional StampedLock
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Introducing StampedLock
 Pros

– Has better performance than ReentrantReadWriteLock
– Latest versions do not suffer from starvation of writers

 Cons
– Idioms are more difficult than with ReadWriteLock

• A small change in idiom code can make a big difference
in performance

– Not nonblocking
– Non-reentrant

22

From Smile to Tears: Emotional StampedLock
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Pessimistic Exclusive Locks (write)
public class StampedLock {
 long writeLock()
 long writeLockInterruptibly()
 throws InterruptedException

 long tryWriteLock()
 long tryWriteLock(long time, TimeUnit unit)
 throws InterruptedException

 void unlockWrite(long stamp)
 boolean tryUnlockWrite()

 Lock asWriteLock()
 long tryConvertToWriteLock(long stamp)

23

From Smile to Tears: Emotional StampedLock
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Pessimistic Non-Exclusive (read)
public class StampedLock { (continued …)
 long readLock()
 long readLockInterruptibly()
 throws InterruptedException

 long tryReadLock()
 long tryReadLock(long time, TimeUnit unit)
 throws InterruptedException

 void unlockRead(long stamp)
 boolean tryUnlockRead()

 Lock asReadLock()
 long tryConvertToReadLock(long stamp)

24

Optimistic reads
to come ...

From Smile to Tears: Emotional StampedLock
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Bank Account With StampedLock
public class BankAccountWithStampedLock {
 private final StampedLock lock = new StampedLock();
 private double balance;
 public void deposit(double amount) {
 long stamp = lock.writeLock();
 try {
 balance = balance + amount;
 } finally { lock.unlockWrite(stamp); }
 }
 public double getBalance() {
 long stamp = lock.readLock();
 try {
 return balance;
 } finally { lock.unlockRead(stamp); }
 }
}

25

The StampedLock reading
is a typically cheaper than
ReentrantReadWriteLock

From Smile to Tears: Emotional StampedLock
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Why Not Use Volatile?
public class BankAccountWithVolatile {
 private volatile double balance;

 public synchronized void deposit(double amount) {
 balance = balance + amount;
 }

 public double getBalance() {
 return balance;
 }
}

26

Much easier!
Works because there

are no invariants
across the fields.

From Smile to Tears: Emotional StampedLock
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Example With Invariants Across Fields
 Point class has x,y coordinates, "belong together"
public class MyPoint {
 private double x, y;
 private final StampedLock sl = new StampedLock();

 // method is modifying x and y, needs exclusive lock
 public void move(double deltaX, double deltaY) {
 long stamp = sl.writeLock();
 try {
 x += deltaX;
 y += deltaY;
 } finally { sl.unlockWrite(stamp); }
 }

27

From Smile to Tears: Emotional StampedLock
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Optimistic Non-Exclusive "Locks"
public class StampedLock {
 long tryOptimisticRead()

 boolean validate(long stamp)

 long tryConvertToOptimisticRead(long stamp)

28

Try to get an optimistic read
lock - might return zero if
an exclusive lock is active

checks whether a write
lock was issued after the
tryOptimisticRead() was
called

Note: sequence validation requires
stricter ordering than apply to
normal volatile reads - a new
explicit loadFence() was added

From Smile to Tears: Emotional StampedLock
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Code Idiom For Optimistic Read
public double optimisticRead() {
 long stamp = sl.tryOptimisticRead();
 double currentState1 = state1,
 currentState2 = state2, ... etc.;
 if (!sl.validate(stamp)) {
 stamp = sl.readLock();
 try {
 currentState1 = state1;
 currentState2 = state2, ... etc.;
 } finally {
 sl.unlockRead(stamp);
 }
 }
 return calculateSomething(state1, state2);
}

29

From Smile to Tears: Emotional StampedLock
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Code Idiom For Optimistic Read
public double optimisticRead() {
 long stamp = sl.tryOptimisticRead();
 double currentState1 = state1,
 currentState2 = state2, ... etc.;
 if (!sl.validate(stamp)) {
 stamp = sl.readLock();
 try {
 currentState1 = state1;
 currentState2 = state2, ... etc.;
 } finally {
 sl.unlockRead(stamp);
 }
 }
 return calculateSomething(state1, state2);
}

30

We get a
stamp to use

for the
optimistic

read

From Smile to Tears: Emotional StampedLock
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Code Idiom For Optimistic Read
public double optimisticRead() {
 long stamp = sl.tryOptimisticRead();
 double currentState1 = state1,
 currentState2 = state2, ... etc.;
 if (!sl.validate(stamp)) {
 stamp = sl.readLock();
 try {
 currentState1 = state1;
 currentState2 = state2, ... etc.;
 } finally {
 sl.unlockRead(stamp);
 }
 }
 return calculateSomething(state1, state2);
}

31

We read
field values
into local

fields

From Smile to Tears: Emotional StampedLock
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Code Idiom For Optimistic Read
public double optimisticRead() {
 long stamp = sl.tryOptimisticRead();
 double currentState1 = state1,
 currentState2 = state2, ... etc.;
 if (!sl.validate(stamp)) {
 stamp = sl.readLock();
 try {
 currentState1 = state1;
 currentState2 = state2, ... etc.;
 } finally {
 sl.unlockRead(stamp);
 }
 }
 return calculateSomething(state1, state2);
}

32

Next we validate
that no write

locks have been
issued in the
meanwhile

From Smile to Tears: Emotional StampedLock
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Code Idiom For Optimistic Read
public double optimisticRead() {
 long stamp = sl.tryOptimisticRead();
 double currentState1 = state1,
 currentState2 = state2, ... etc.;
 if (!sl.validate(stamp)) {
 stamp = sl.readLock();
 try {
 currentState1 = state1;
 currentState2 = state2, ... etc.;
 } finally {
 sl.unlockRead(stamp);
 }
 }
 return calculateSomething(state1, state2);
}

33

If they have,
then we don't

know if our state
is clean

Thus we acquire a
pessimistic read
lock and read the

state into local
fields

From Smile to Tears: Emotional StampedLock
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Code Idiom For Optimistic Read
public double optimisticRead() {
 long stamp = sl.tryOptimisticRead();
 double currentState1 = state1,
 currentState2 = state2, ... etc.;
 if (!sl.validate(stamp)) {
 stamp = sl.readLock();
 try {
 currentState1 = state1;
 currentState2 = state2, ... etc.;
 } finally {
 sl.unlockRead(stamp);
 }
 }
 return calculateSomething(state1, state2);
}

34

From Smile to Tears: Emotional StampedLock
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Optimistic Read In Point Class
public double distanceFromOrigin() {
 long stamp = sl.tryOptimisticRead();
 double currentX = x, currentY = y;
 if (!sl.validate(stamp)) {
 stamp = sl.readLock();
 try {
 currentX = x;
 currentY = y;
 } finally {
 sl.unlockRead(stamp);
 }
 }
 return Math.hypot(currentX, currentY);
}

35

Shorter code path in
optimistic read leads

to better read
performance than with
original examples in

JavaDoc

From Smile to Tears: Emotional StampedLock
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Code Idiom For Conditional Change
public boolean changeStateIfEquals(oldState1, oldState2, ...
 newState1, newState2, ...) {
 long stamp = sl.readLock();
 try {
 while (state1 == oldState1 && state2 == oldState2 ...) {
 long writeStamp = sl.tryConvertToWriteLock(stamp);
 if (writeStamp != 0L) {
 stamp = writeStamp;
 state1 = newState1; state2 = newState2; ...
 return true;
 } else {
 sl.unlockRead(stamp);
 stamp = sl.writeLock();
 }
 }
 return false;
 } finally { sl.unlock(stamp); }
}

36

From Smile to Tears: Emotional StampedLock
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Code Idiom For Conditional Change
public boolean changeStateIfEquals(oldState1, oldState2, ...
 newState1, newState2, ...) {
 long stamp = sl.readLock();
 try {
 while (state1 == oldState1 && state2 == oldState2 ...) {
 long writeStamp = sl.tryConvertToWriteLock(stamp);
 if (writeStamp != 0L) {
 stamp = writeStamp;
 state1 = newState1; state2 = newState2; ...
 return true;
 } else {
 sl.unlockRead(stamp);
 stamp = sl.writeLock();
 }
 }
 return false;
 } finally { sl.unlock(stamp); }
}

37

We get a pessimistic
read lock

From Smile to Tears: Emotional StampedLock
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Code Idiom For Conditional Change
public boolean changeStateIfEquals(oldState1, oldState2, ...
 newState1, newState2, ...) {
 long stamp = sl.readLock();
 try {
 while (state1 == oldState1 && state2 == oldState2 ...) {
 long writeStamp = sl.tryConvertToWriteLock(stamp);
 if (writeStamp != 0L) {
 stamp = writeStamp;
 state1 = newState1; state2 = newState2; ...
 return true;
 } else {
 sl.unlockRead(stamp);
 stamp = sl.writeLock();
 }
 }
 return false;
 } finally { sl.unlock(stamp); }
}

38

If the state is not the
expected state, we

unlock and exit method

Note: the general unlock()
method can unlock both

read and write locks

From Smile to Tears: Emotional StampedLock
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Code Idiom For Conditional Change
public boolean changeStateIfEquals(oldState1, oldState2, ...
 newState1, newState2, ...) {
 long stamp = sl.readLock();
 try {
 while (state1 == oldState1 && state2 == oldState2 ...) {
 long writeStamp = sl.tryConvertToWriteLock(stamp);
 if (writeStamp != 0L) {
 stamp = writeStamp;
 state1 = newState1; state2 = newState2; ...
 return true;
 } else {
 sl.unlockRead(stamp);
 stamp = sl.writeLock();
 }
 }
 return false;
 } finally { sl.unlock(stamp); }
}

39

We try convert our read
lock to a write lock

From Smile to Tears: Emotional StampedLock
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Code Idiom For Conditional Change
public boolean changeStateIfEquals(oldState1, oldState2, ...
 newState1, newState2, ...) {
 long stamp = sl.readLock();
 try {
 while (state1 == oldState1 && state2 == oldState2 ...) {
 long writeStamp = sl.tryConvertToWriteLock(stamp);
 if (writeStamp != 0L) {
 stamp = writeStamp;
 state1 = newState1; state2 = newState2; ...
 return true;
 } else {
 sl.unlockRead(stamp);
 stamp = sl.writeLock();
 }
 }
 return false;
 } finally { sl.unlock(stamp); }
}

40

If we are able to upgrade to
a write lock (ws != 0L), we

change the state and exit

From Smile to Tears: Emotional StampedLock
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Code Idiom For Conditional Change
public boolean changeStateIfEquals(oldState1, oldState2, ...
 newState1, newState2, ...) {
 long stamp = sl.readLock();
 try {
 while (state1 == oldState1 && state2 == oldState2 ...) {
 long writeStamp = sl.tryConvertToWriteLock(stamp);
 if (writeStamp != 0L) {
 stamp = writeStamp;
 state1 = newState1; state2 = newState2; ...
 return true;
 } else {
 sl.unlockRead(stamp);
 stamp = sl.writeLock();
 }
 }
 return false;
 } finally { sl.unlock(stamp); }
}

41

Else, we explicitly unlock the
read lock and lock the write lock

And we try again

From Smile to Tears: Emotional StampedLock
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Code Idiom For Conditional Change
public boolean changeStateIfEquals(oldState1, oldState2, ...
 newState1, newState2, ...) {
 long stamp = sl.readLock();
 try {
 while (state1 == oldState1 && state2 == oldState2 ...) {
 long writeStamp = sl.tryConvertToWriteLock(stamp);
 if (writeStamp != 0L) {
 stamp = writeStamp;
 state1 = newState1; state2 = newState2; ...
 return true;
 } else {
 sl.unlockRead(stamp);
 stamp = sl.writeLock();
 }
 }
 return false;
 } finally { sl.unlock(stamp); }
}

42

If the state is not the
expected state, we

unlock and exit method

This could happen if between the
unlockRead() and the writeLock()
another thread changed the values

From Smile to Tears: Emotional StampedLock
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Code Idiom For Conditional Change
public boolean changeStateIfEquals(oldState1, oldState2, ...
 newState1, newState2, ...) {
 long stamp = sl.readLock();
 try {
 while (state1 == oldState1 && state2 == oldState2 ...) {
 long writeStamp = sl.tryConvertToWriteLock(stamp);
 if (writeStamp != 0L) {
 stamp = writeStamp;
 state1 = newState1; state2 = newState2; ...
 return true;
 } else {
 sl.unlockRead(stamp);
 stamp = sl.writeLock();
 }
 }
 return false;
 } finally { sl.unlock(stamp); }
}

43

Because we hold the write lock,
the tryConvertToWriteLock()

method will succeed

We update the state and exit

From Smile to Tears: Emotional StampedLock
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Code Idiom For Conditional Change
public boolean changeStateIfEquals(oldState1, oldState2, ...
 newState1, newState2, ...) {
 long stamp = sl.readLock();
 try {
 while (state1 == oldState1 && state2 == oldState2 ...) {
 long writeStamp = sl.tryConvertToWriteLock(stamp);
 if (writeStamp != 0L) {
 stamp = writeStamp;
 state1 = newState1; state2 = newState2; ...
 return true;
 } else {
 sl.unlockRead(stamp);
 stamp = sl.writeLock();
 }
 }
 return false;
 } finally { sl.unlock(stamp); }
}

44

From Smile to Tears: Emotional StampedLock
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Applying To Our Point Class
public boolean moveIfAt(double oldX, double oldY,
 double newX, double newY) {
 long stamp = sl.readLock();
 try {
 while (x == oldX && y == oldY) {
 long writeStamp = sl.tryConvertToWriteLock(stamp);
 if (writeStamp != 0L) {
 stamp = writeStamp;
 x = newX; y = newY;
 return true;
 } else {
 sl.unlockRead(stamp);
 stamp = sl.writeLock();
 }
 }
 return false;
 } finally { sl.unlock(stamp); }
}

45

From Smile to Tears: Emotional StampedLock
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Performance StampedLock & RWLock
 We researched ReentrantReadWriteLock in 2008

– Discovered serious starvation of writers (exclusive lock) in Java 5
– And also some starvation of readers in Java 6
– http://www.javaspecialists.eu/archive/Issue165.html

 StampedLock released to concurrency-interest list 12th Oct 2012
– Worse writer starvation than in the ReentrantReadWriteLock
– Missed signals could cause StampedLock to deadlock

 Revision 1.35 released 28th Jan 2013
– Changed to use an explicit call to loadFence()
– Writers do not get starved anymore
– Works correctly

46

From Smile to Tears: Emotional StampedLock
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Performance StampedLock & RWLock
 In our test, we used

– lambda-8-b75-linux-x64-28_jan_2013.tar.gz
– Two CPUs, 4 Cores each, no hyperthreading

• 2x4x1
– Ubuntu 9.10
– 64-bit
– Intel(R) Core(TM) i7 CPU 920 @ 2.67GHz

• L1-Cache: 256KiB, internal write-through instruction
• L2-Cache: 1MiB, internal write-through unified
• L3-Cache: 8MiB, internal write-back unified

– JavaSpecialists.eu server
• Never breaks a sweat delivering newsletters

47

From Smile to Tears: Emotional StampedLock
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Conversions To Pessimistic Reads
 In our experiment, reads had to be converted to

pessimistic reads less than 10% of the time
– And in most cases, less than 1%

 This means the optimistic read worked most of the
time

48

From Smile to Tears: Emotional StampedLock
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

How Much Faster Is StampedLock
Than ReentrantReadWriteLock?
 With a single thread

0

1

3

4

5

R=1,W=0 R=0,W=1

1.08x

0x 0x

4.43x
x

fa
st

er
 th

an
 R

ea
dW

rit
eL

oc
k Read Speedup

Write Speedup

49

From Smile to Tears: Emotional StampedLock
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

 With four threads

0

1

10

100

1000

R=4,W=0 R=3,W=1 R=2,W=2 R=1,W=3 R=0,W=4

1.2x1.1x1.2x

0.9x

353x

12x11x

64x

x
fa

st
er

 th
an

 R
ea

dW
rit

eL
oc

k Read Speedup
Write Speedup

50

How Much Faster Is StampedLock
Than ReentrantReadWriteLock?

From Smile to Tears: Emotional StampedLock
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

 With sixteen threads
This demonstrates the

starvation problem on readers
in RWLock

1

10

100

1000

10000

R=16,W=0 R=13,W=3 R=10,W=6 R=7,W=9 R=4,W=12 R=1,W=15

x
fa

st
er

 th
an

 R
ea

dW
rit

eL
oc

k

Read Speedup
Write Speedup

51

How Much Faster Is StampedLock
Than ReentrantReadWriteLock?

From Smile to Tears: Emotional StampedLock
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Reader Throughput With StampedLock

100

1000

10000

1 2 4 8 16

Th
ro

ug
hp

ut
 (L

og
ar

ith
m

ic
 S

ca
le

)

Number of Reader Threads (no Writers)

Read Throughput
Expected (linear to n cores)

52

From Smile to Tears: Emotional StampedLock
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Writer Throughput With StampedLock

0

0.5

1.0

1.5

2.0

1 2 4 8 16

Th
ro

ug
hp

ut
 (L

in
ea

r S
ca

le
)

Number of Writer Threads (no Readers)

Write Throughput

Note: Linear
Scale

throughput

53

From Smile to Tears: Emotional StampedLock
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Mixed Reader Throughput StampedLock

1

10

100

1000

10000

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Th
ro

ug
hp

ut
 (L

og
ar

ith
m

ic
 S

ca
le

)

Number of Reader Threads (16 - n Writers)

Read Throughput

54

From Smile to Tears: Emotional StampedLock
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Mixed Reader Throughput RWLock

Shows
Reader

Starvation
in

RWLock

0.001

0.01

0.1

1

10

100

16151413121110 9 8 7 6 5 4 3 2 1

ReentrantReadWriteLock
Th

ro
ug

hp
ut

 (L
og

ar
ith

m
ic

 S
ca

le
)

Number of Reader Threads (16 - n Writers)

Read Throughput

55

From Smile to Tears: Emotional StampedLock
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Conclusion Of Performance Analysis
 StampedLock performed very well in all our tests

– Much faster than ReentrantReadWriteLock

 Offers a way to do optimistic locking in Java

 Good idioms have a big impact on the performance

56

From Smile to Tears: Emotional StampedLock
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Idioms With Lambdas

57

From Smile to Tears: Emotional StampedLock
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Idioms With Lambdas
 Java 8 lambdas allow us to define a structure of a

method, leaving the details of what to call over to
users

– A bit like the "Template Method" Design Pattern

58

List<String> students = new ArrayList<>();
Collections.addAll(students, "Anton", "Heinz", "John");
students.forEach((s) -> System.out.println(s.toUpperCase()));

ANTON
HEINZ
JOHN

From Smile to Tears: Emotional StampedLock
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

LambdaFAQ.org
 Edited by Maurice Naftalin

– Are lambda expressions objects?
– Why are lambda expressions so-called?
– Why are lambda expressions being added to Java?
– Where is the Java Collections Framework going?
– Why are Stream operations not defined directly on

Collection?
– etc.

59

http://www.lambdafaq.org/are-lambda-expressions-objects/
http://www.lambdafaq.org/are-lambda-expressions-objects/
http://www.lambdafaq.org/why-are-lambda-expressions-so-called/
http://www.lambdafaq.org/why-are-lambda-expressions-so-called/
http://www.lambdafaq.org/why-are-lambda-expressions-being-added-to-java/
http://www.lambdafaq.org/why-are-lambda-expressions-being-added-to-java/
http://www.lambdafaq.org/where-is-the-java-collections-framework-going/
http://www.lambdafaq.org/where-is-the-java-collections-framework-going/
http://www.lambdafaq.org/why-are-stream-operations-not-defined-directly-on-collection/
http://www.lambdafaq.org/why-are-stream-operations-not-defined-directly-on-collection/
http://www.lambdafaq.org/why-are-stream-operations-not-defined-directly-on-collection/
http://www.lambdafaq.org/why-are-stream-operations-not-defined-directly-on-collection/

From Smile to Tears: Emotional StampedLock
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Idioms For Using StampedLock
import java.util.concurrent.locks.*;
import java.util.function.*;

public class LambdaStampedLock extends StampedLock {
 public void writeLock(Runnable writeJob) {
 long stamp = writeLock();
 try {
 writeJob.run();
 } finally {
 sl.unlockWrite(stamp);
 }
 }

60

lsl.writeLock(
 () -> {
 x += deltaX;
 y += deltaY;
 }
);

From Smile to Tears: Emotional StampedLock
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Idioms For Using StampedLock
public Object optimisticRead(Supplier<?> supplier) {
 long stamp = tryOptimisticRead();
 Object result = supplier.get();
 if (!validate(stamp)) {
 stamp = readLock();
 try {
 result = supplier.get();
 } finally {
 unlockRead(stamp);
 }
 }
 return result;
}

61

double[] xy = (double[])lsl.optimisticRead(
 () -> new double[]{x, y}
);
return Math.hypot(xy[0], xy[1]);

From Smile to Tears: Emotional StampedLock
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Idioms For Using StampedLock
public static boolean conditionalWrite(
 BooleanSupplier condition, Runnable action) {
 long stamp = readLock();
 try {
 while (condition.getAsBoolean()) {
 long writeStamp = tryConvertToWriteLock(stamp);
 if (writeStamp != 0) {
 action.run();
 stamp = writeStamp;
 return true;
 } else {
 unlockRead(stamp);
 stamp = writeLock();
 }
 }
 return false;
 } finally {
 unlock(stamp);
 }
}

62

return lsl.conditionalWrite(
 () -> x == oldX && y == oldY,
 () -> { x = newX; y = newY; }
);

From Smile to Tears: Emotional StampedLock
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Nonblocking Point

63

From Smile to Tears: Emotional StampedLock
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Nonblocking Point
 Instead of relying on synchronizers, use non-

blocking algorithm
– Might create additional objects

• But a contended StampedLock will also create objects
–

64

From Smile to Tears: Emotional StampedLock
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Store State Inside AtomicReference
public class PointNonblocking {
 public static final double[] INITIAL = new double[]{0, 0};
 private final AtomicReference<double[]> xy =
 new AtomicReference<>(INITIAL);

 public void move(double deltaX, double deltaY) {
 double[] current, next;
 do {
 current = xy.get();
 double x = current[0];
 double y = current[1];
 next = new double[]{x + deltaX, y + deltaY};
 } while (!xy.compareAndSet(current, next));
 }

65

From Smile to Tears: Emotional StampedLock
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Reading Does Not Create Objects
 public double distanceFromOrigin() {
 double[] current = xy.get();
 double x = current[0];
 double y = current[1];
 return Math.hypot(x, y);
 }

66

From Smile to Tears: Emotional StampedLock
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Conditional Write Can Make Objects
 public boolean moveIfAt(double oldX, double oldY,
 double newX, double newY) {
 double[] current, next;
 do {
 current = xy.get();
 double x = current[0];
 double y = current[1];
 if (x != oldX || y != oldY) {
 return false;
 }
 next = new double[]{newX, newY};
 } while (!xy.compareAndSet(current, next));
 return true;
 }
}

67

From Smile to Tears: Emotional StampedLock
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Which Is Fastest?
 StampedLock, synchronized or non-blocking?

– Depends on how you measure
– For multiple readers, lock-free is probably faster

• http://mechanical-sympathy.blogspot.de/2013/08/lock-
based-vs-lock-free-concurrent.html

– But synchronized might be faster than
both in some cases

– Depends on how you use it
• (Great consultant answer :-))

68

From Smile to Tears: Emotional StampedLock
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

69

Conclusion

Where to next?

From Smile to Tears: Emotional StampedLock
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

The Art Of Multiprocessor Programming
 Herlihy & Shavit

– Theoretical book on how
things work "under the hood"

– Good as background reading

16: C
onclusion

70

From Smile to Tears: Emotional StampedLock
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

JSR 166
 http://gee.cs.oswego.edu/

 Concurrency-Interest mailing list
– Usage patterns and bug reports on Phaser and

StampedLock are always welcome on the list

71

From Smile to Tears: Emotional StampedLock
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Mechanical Sympathy - Martin Thompson
 Mailing list

– mechanical-sympathy@googlegroups.com

 Blog
– http://mechanical-sympathy.blogspot.com

72

From Smile to Tears: Emotional StampedLock
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

Heinz Kabutz (heinz@kabutz.net)
 The Java Specialists' Newsletter

– Subscribe today:
• http://www.javaspecialists.eu

 Questions?

73

From Smile to Tears: Emotional StampedLock
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

74

From Smile To Tears:
Emotional StampedLock

heinz@javaspecialists.eu

Questions?

From Smile to Tears: Emotional StampedLock
©

 2013 H
einz K

abutz – A
ll R

ights R
eserved

75

The Java Specialists' Newsletter

