___From Smile to Tears: Emotional StampedLock
// .

—

" From Smile To Tears:
- Emotional StampedLock

Dr Heinz M. Kabutz

Last updated 2013-11-05

pansasay siybny |y — zingey] ZuleH €102 Q@ -

2

From Smile tb ‘Tear;:__Emotlonal StampedLock

Helinz Kabutz

® Author of The Java Specialists’ Newsletter

— Articles about advanced core Java programming

: ® http://lwww.javaspecialists.eu

pansasay sybry ||y — zZingey] zulaH £10Z @

=Java

Champions

'vnchronizers

e

-

?

lol {s.eu

aining

W

paasasay siyby ||y — zinge)] zuieH €102 ®

N

From Smile to Tears: Emotional StampedLock

Why Synchronizers?

® Synchronizers keep shared mutable state
consistent

— Don't need if we can make state immutable or unshared

® Some applications need large amounts of state

.1 m..“

— Immutable could stress the garbage collector

— Unshared could stress the memory volume

pani1asay s)ybiy ||y — Zingey] zuidH €102 ©@

Coarse Grained Locking

® Overly coarse-grained locking means the CPUs are
starved for work

— Only one core is busy at a time

® Took 51 seconds to complete

poasasay SIUBI IV — ZINGeY| ZUISH £10Z O

:

@)}

From Smile tb ‘Tear;:__Emotlonal StampedLock

"Good" And "Bad" Context Switches

® "Good" Context Switch

— Thread has used up its time quantum and can be swapped
out by the OS in a single clock cycle

— Also called "Involuntary” context switch

® "Bad" Context Switch

— EXxecuting thread needs to stop because it cannot acquire
a resource held by another suspended thread

pansasay sybry ||y — zZingey] zulaH £10Z @

— Also called "Voluntary™ context switch
— Can cost tens of thousands of clock cycles

/

C ottt A _ '- »
> . ‘ — - ~[! J .-
‘ ¢ J M -‘ i ‘. I - .t \

: Fine Grained Locking

C "Synchronized” causes "bad"” context switches

— Thread cannot get the lock, so it is parked
e Gives up its allocated time quantum

® Took 745 seconds to complete

R *
>
» « gt
L: s.
a

| ® [t appears that system time is 50% of the total time

pansasay sybny ||y — zingey] zuldH £10Z ©

— So should this not have taken the same elapsed time as
before?

¥ =
‘w) ‘!.

Qo

Independent Tasks With No Locking

® Instead of shared mutable state, every thread uses
only local data and in the end we merge the results

® Took 28 seconds to complete with 100% utilization

@
N
2
w
-
8
N
9
e
'
=
2
Q
>
)
A
&
®
3
Q.

:

©

From Smile tb ‘Tear;:__Emotlonal StampedLock

Nonblocking Lock-free Algorithms

® Lock-based algorithms can cause scalability issues

— If a thread is holding a lock and is swapped out, no one
can progress

— Amdahl's and Little's laws explain why we can't scale

® Definitions of types of algorithms

— Nonblocking: failure or suspension of one thread, cannot
cause another thread to fail or be suspended

pansasay sybry ||y — zZingey] zulaH £10Z @

— Lock-free: at each step, some thread can make progress

S © 2013 Heinz Kabutz - All Rights Reserved

.Javqgggggylﬂé.eu

~\
~\

From Smile to Tears: Emotional StampedLock

Motivation For StampedlLock

® Some constructs need a form of read/write lock

® ReentrantReadWriteLock can cause starvation

— Plus it always uses pessimistic locking

pani1asay s)ybiy ||y — Zingey] zuidH €102 ©@

Jovaspb\clollm.ou

cialists.eu

Javasg

L
N

From Smile to Tears: Emotional StampedLock

Motivation For StampedlLock

® StampedLock provides optimistic locking on reads

— Which can be converted easily to a pessimistic read

® Write locks are always pessimistic

— Also called exclusive locks

® StampedLock is not reentrant

pani1asay s)ybiy ||y — Zingey] zuidH €102 ©@

X
QW

From Smile to Tears: Emotional StampedLock

Read-Write Locks Refresher

® ReadWriteLock interface

— The writeLock() is exclusive - only one thread at a time

— The readLock() is given to lots of threads at the same time
* Much better when mostly reads are happening

— Both locks are pessimistic

:
g
:

pani1asay s)ybiy ||y — Zingey] zuidH €102 ©@

-
-
L2

From Smile to Tears: Emotional StampedLock

Account With ReentrantRead\WriteLock

public class BankAccountWithReadWritelLock {
private final ReadWriteLock lock =

new ReentrantReadWritelLock();

private double balance: - The cost overhead
public void deposit(double amount) { |
lock.writeLock().lock(); of the RWLock
try { means we need at
balance = balance + amount; | least 2000
} finally { lock.writeLock().unlock(); } : cds .
1 | 1nstructions to
public double getBalance() { " benefit from the
lock.readLock().Tock();
try { O O readLock() added
return balance; thr()ughput
} finally { lock.readLock().unlock(); } ——m———

¥
}

<
N

el ZUleH €102 ©

V¥~ 4y

PONIUDUR] DIYwig] ||

Y
O

From Smile to Tears: Emotional StampedLock

ReentrantReadWriteLock Starvation

® When readers are given priority, then writers might
never be able to complete (Java 5)

S ® But when writers are given priority, readers might
2 be starved (Java 6)

® http://lwww.javaspecialists.eu/archive/lssue165.html

pani1asay s)ybiy ||y — Zingey] zuidH €102 ©@

From Smile to T motional StampedLock

Java 5 ReadWriteLock Starvation

® We first acquire some read locks

® We then acquire one write lock

ReadWritelLock

| ® Despite write lock waiting, read
locks are still issued

® If enough read locks are issued,
write lock will never get a chance
and the thread will be starved!

=

. . ’7. - ‘1 ;:;; :) l‘ ~{ o“‘
v = | -~ | - I !
'S 4 R - i.’ I - -) B 3

; ReadWriteLock In Java 6

® Java 6 changed the policy
and now read locks have to

wait until the write lock has Thread Count: IS
. Waiting to acquire READ lock
been issued

<
~N

HEI0ZO

' ReadWriteLock
-1 ® However, now the readers

can be starved if we have
a lot of writers

=
o

From Smile to Tears: Emotional StampedLock

Synchronized vs ReentrantLock

® ReentrantReadWriteLock, ReentrantLock and
synchronized locks have the same memory
semantics

| ® However, synchronized is easier to write correctly

b1y 11V — ZInge)] zuisH €102 ©®

Sygjhzzngzzﬂ;?;) { rwlock.writeLock().lock();

1 try {
ee— // do operation
} finally {

rwlock.writeLock() .unlock();

¥

=
8

N
©

From Smile to Tears: Emotional StampedLock

Bad Iry-Finally Blocks

| ® Either no try-finally at all

rwlock.writeLock().lock();
// do operation
rwlock.writeLock().unlock();

B

paa1asay siybiy ||y — zinge)] ZuidH €102 ©

Javaspecialists.eu

N
S

From Smile to Tears: Emotional StampedLock

Bad Iry-Finally Blocks

® Or the lock is locked inside the try block

pansasay siybiy |1V — ZInge)] ZuidH £10Z 6

try {
= rwlock.writeLock().lock();
e // do operation
“ } finally {
% rwlock.writeLock() .unlock();
,§f 1
g S — L —
S

N
<

From Smile to Tears: Emotional StampedLock

Bad Iry-Finally Blocks

® Or the unlock() call is forgotten in some places
altogether!

rwlock.writeLock().lock();

// do operation
// no unlock()

pansasay syby ||y — Zinge)y zulaH £10Z ©

Jovosp"qclallsts.ou

N
N

From Smile to Tears: Emotional StampedLock

Introducing StampedLock

® Pros

— Has better performance than ReentrantReadWriteLock

— Latest versions do not suffer from starvation of writers

5‘ ® Cons
C — ldioms are more difficult than with ReadWriteLock

A small change in idiom code can make a big difference
in performance

pani1asay s)ybiy ||y — Zingey] zuidH €102 ©@

— Not nonblocking
— Non-reentrant

N
W

From Smile to Tears: Emotional StampedLock

Pessimistic Exclusive Locks (write)

public class StampedLock {
long writeLock()
lTong writeLockInterruptibly()
throws InterruptedException

long tryWritelLock()
long tryWriteLock(long time, TimeUnit unit)
throws InterruptedException

:

void unlockWrite(long stamp)
boolean tryUnlockWrite()

pani1asay s)ybiy ||y — Zingey] zuidH €102 ©@

Lock asWriteLock()
long tryConvertToWriteLock(long stamp)

N
N

From Smile to Tears: Emotional StampedLock

Pessimistic Non-Exclusive (read)

public class StampedLock { (continued ..)
long readlLock ()
long readlLockInterruptibly()
throws InterruptedException

long tryReadLock()
long tryReadLock(long time, TimeUnit unit)
throws InterruptedException

>

pani1asay s)ybiy ||y — Zingey] zuidH €102 ©@

void unlockRead(long stamp) Optimistic reads
boolean tryUnlockRead() to come . ﬂ

Em’

Lock asReadLock ()
long tryConvertToReadLock(long stamp)

From Smile to Tears: Emotional StampedLock 25

. @

Bank Account With StampedLock E

T

public class BankAccountWithStampedLock { 2.
private final StampedLock Tock = new StampedLock(): ;
private double balance;)
public void deposit(double amount) { ﬁ
long stamp = lock.writeLock(); |

3. try { >
g balance = balance + amount; Y
= 1 finally { lock.unlockWrite(stamp); } %
public double getBalance() { The StampedLock reading ?
long stamp = lock.readlLock(); is a typically cheaper than

. |

try { ReentrantReadWriteLock {!
return balance; St -

} finally { lock.unlockRead(stamp); }

¥
}

N
@)

From Smile to Tears: Emotional StampedLock

Why Not Use Volatile?

public class BankAccountWithVolatile {
private volatile double balance;

public synchronized void deposit(double amount) {

pani1asay s)ybiy ||y — Zingey] zuidH €102 ©@

5 balance = balance + amount;
2 B
ci; public double getBalance() {
: return balance; e —
} - Much easier! |
¥ Works because there

are no invariants j
|
| across the fields. |

:

N
~

From Smile to Tears: Emotional StampedLock

Example With Invariants Across Fields

® Point class has x,y coordinates, "belong together™

public class MyPoint {
private double x, y;
private final StampedLock sl = new StampedLock();

// method 1s modifying x and y, needs exclusive lock
public void move(double deltaX, double deltaY) {
long stamp = sl.writeLock();

pani1asay s)ybiy ||y — Zingey] zuidH €102 ©@

try {
X += deltaX;
y += deltaY;

} finally { sl.unlockWrite(stamp); }
¥

N
Qo

From Smile to Tears: Emotional StampedLock

Optimistic Non-Exclusive "Locks"

public class StampedLock { Tryto get an optimistic read
long tryOptimisticRead() lock - might return zero if |
‘an exclusive lock is active

) boolean validate(long stamp) checks whether a write

= ______ lock was issued after the |

Note: sequence validation requires tryOptimisticRead() was |
| stricter ordering than apply to ** called

normal volatile reads - a new
explicit loadFence() was added

|

paasasay s)ybiy IV — ZIngey zuidH £10Z O

L

long tryConvertToOptimisticRead(long stamp)

cialists.eu

E

N
©

From Smile to Tears: Emotional StampedLock

Code Idiom For Optimistic Read

public double optimisticRead() {
long stamp = sl.tryOptimisticRead();
double currentStatel = statel,
currentState?2 = statel2, ... etc.;
1if (!sl.validate(stamp)) {

pani1asay s)ybiy ||y — Zingey] zuidH €102 ©@

stamp = sl.readLock();
try {
currentStatel = statel;
currentState?2 = state?2, ... etc.;
} finally {
sl.unlockRead(stamp) ;
¥

}

return calculateSomething(statel, statel?);

¥

Q
S

From Smile to Tears: Emotional StampedLock

: . ! . @

Code Idiom For Optimistic Read g

T

public double optimisticRead() { g S

- | Tlong stamp = s1.tryOptimisticRead(); .~ Wegeta o

double currentStatel = statel, | B

currentState2 = state2, ... etc.: Stamp to use =

- if (!sl.validate(stamp)) { | for the ;

@ stamp = s1.readlLock(): | optimistic =

% try { * &

© currentStatel = statel; =

- 8 currentState2 = state?2, ... etc.; e

a } finally { G

% s1.unlockRead(stamp) ; s

L } S
}

return calculateSomething(statel, statel?);

¥

From Smile to Tears: Emotional StampedLock

Code Idiom For Optimistic Read

public double optimisticRead() {

Javaspecialists.eu

¥

long stamp = sl.tryOptimisticRead() ;
double currentStatel = statel,

currentState?2 = statel2, ... etc.;

if (!sl.validate(stamp)) {
stamp = sl.readLock();

try {
currentStatel = statel;
currentState?2 = state?2, ... etc.;
} finally {
sl.unlockRead(stamp) ;
}

¥

~ Weread |
field values
into local |
fields |

|
|
H

return calculateSomething(statel, statel?);

Q
=

pansasay siybry |1y — zinge)] zuieH €102 ©

Code Idiom For Optimistic Read

public double optimisticRead() {

—

—

Javaspecialists.eu

¥

Q
N

From Smile to Tears: Emotional StampedLock

long stamp = sl.tryOptimisticRead() ;
double currentStatel = statel,

currentState?2 = statel2, ... etc.;
1if (!sl.validate(stamp)) { —_— \
stamp = sl.readlLock(Q); | Next we validate \‘
try { that no write
currentStatel = statel; | locks have been
currentState2 = state’?2, ... etc.; . . ~
1 finally { | 1ssued 1n the
s1.unlockRead(stamp); ”

paa1asay siybiy ||y — zinge)] ZuidH €102 ©

¥
¥

return calculateSomething(statel, statel?);

33

From Smile to Tears: Emotional StampedLock

, . . . @

Code Idiom For Optimistic Read g

| |-

public double optimisticRead() { ~ If they have, S

long stamp = sl.tryOptimisticRead() ; then we don't | ;

double currentStatel = statel, | know if our state

currentStatel = statel, ... etc.| . ®

M if (!sl.validate(stamp)) { | _ N

@ stamp = s1.readLock(); =

% try { &

[currentStatel = statel: e =

- currentState2 = state?2, ... etc. 2

4} finally { ;

o s1.unlockRead(stamp); <

S I | =
1 |
return calculateSomething(statel, st

cialists.eu

E

Q
N

From Smile to Tears: Emotional StampedLock

Code Idiom For Optimistic Read

public double optimisticRead() {
long stamp = sl.tryOptimisticRead();
double currentStatel = statel,
currentState?2 = statel2, ... etc.;
1if (!sl.validate(stamp)) {

pani1asay s)ybiy ||y — Zingey] zuidH €102 ©@

stamp = sl.readLock();
try {
currentStatel = statel;
currentState?2 = state?2, ... etc.;
} finally {
sl.unlockRead(stamp) ;
¥

}

return calculateSomething(statel, statel?);

¥

35

From Smile to Tears: Emotional StampedLock

Optimistic Read In Point Class

public double distanceFromOrigin() {
long stamp = sl.tryOptimisticRead();

double currentX = x, currentY = y;
if (!sl.validate(stamp)) {

stamp = sl.readlLock();

\
|

- Shorter code path in

pani1asay s)ybiy ||y — Zingey] zuidH €102 ©@

>
®

2 try 1 optimistic read leads |

; currentX = X; to better read W

currentY = y; | |

1 finally { pertormance than with |

s1.unlockRead(stamp); | original examples 1n }

h | JavaDoc

) _
return Math.hypot(currentX, currentY);

¥

Q
@)

From Smile to Tears: Emotional StampedLock

Code Idiom For Conditional Change

public boolean changeStateIfEquals(oldStatel, oldState2, ...
newStatel, newState2, ...) {
long stamp = sl.readlLock();
try {
while (statel == oldStatel && state?2 == oldState2 ...) {
long writeStamp = sl.tryConvertToWriteLock(stamp) ;
1f (writeStamp != OL) {
stamp = writeStamp;
statel = newStatel; state2 = newStatel;
return true;
} else {
sl.unlockRead(stamp) ;
stamp = sl.writeLock();
}
}
return false;
} finally { sl.unlock(stamp); }

}

s
5
S
o

pani1asay s)ybiy ||y — Zingey] zuidH €102 ©@

Code Idiom For Conditional Change

public boolean changeStatelfEquals(oldStatel, oldState?2,

Javaspecialists.eu

}

QW
~N

From Smile to Tears: Emotional StampedLock

newStatel, newState2, ...) {
long stamp = sl.readlLock();
try {
while (statel == oldStatel && state2 == oldState2 ...) {
long writeStamp = sl.tryConvertloWriteLock(stamp) ;
1if (writeStamp != OL) {
stamp = writeStamp;
statel = newStatel; statel2 = newStatel;
return true;
} else {
sl.unlockRead(stamp) ; e L
: stamp = sl.writeLock(); We get a pessimistic |
} read lock
return false; — —
} finally { sl.unlock(stamp); }

paAIasay SIYBIN 11V — ZIngey| ZuidH £1L0Z 6

Q
Qo

From Smile to Tears: Emotional StampedLock

Code Idiom For Conditional Change

public boolean changeStatelfEquals(oldStatel, oldState2, ...
newStatel, newState?2, ...) {
long stamp = sl.readlLock();

try {
while (statel == oldStatel && state?2 == oldState2 ...) {

pansasay syby ||y — Zinge)y zulaH £10Z ©

> long writeStamp = sl. tryConvertToWr1fA*ﬂ&kéﬂhﬂun\L e
- if (writeStamp != OL) { It the state 1s not the w
y stamp = writeStamp; |
% statel = newStatel; statel = newSt eXpeCted state, we |
3 return true; | unlock and exit method
-1{“ } else { -)
3 sl.unlockRead(stamp) ;
stamp = sl.writeLock(); U EEE— ——
§ } ' Note: the general unlock()
¥ method can unlock both |

return false; |
} finally { s1.unlock(stamp); } | readandv ;

}

L
©

From Smile to Tears: Emotional StampedLock

Code Idiom For Conditional Change

public boolean changeStateIfEquals(oldStatel, oldStateZ,

e hewStat
: long stamp = sl.readLock(); - We try COHVGIT our Tead ‘
try { lock to a Wr1te lock i
while (statel == oldStatel && state2 - 3 :

long writeStamp = sl. tryConvertToWr1teLock(stamp)
1if (writeStamp != OL) {

stamp = writeStamp;

statel = newStatel; statel2 = newStatel;

return true;
} else {

sl.unlockRead(stamp) ;

stamp = sl.writeLock();

¥

pansasay sybry 1Y - Zl“qe)l zu!a|.| €102 ®

Javaspecialists.eu

¥

return false;
} finally { sl.unlock(stamp); }

}

N
S

From Smile to Tears: Emotional StampedLock

Code Idiom For Conditional Change

public boolean changeStatelfEquals(oldStatel, oldState2, ...
o newStatel, newState2, ...) {
long stamp = sl.readlLock();

try {
while (statel == oldStatel && state2 == oldState2 ...) {

pansasay siybry |1y — zinge)] zuieH €102 ©

> long writeStamp = sl.tryConvertloWriteLock(stamp) ;

® if (writeStamp != OL) {

§ stamp = writeStamp;

-';- statel = newStatel; state2 = newStatel;

O return true;

_1{‘ } else {

» sl.unlockRead(stamp) ; T ———— ————

S stamp = s1.writeLock(); If we are able to upgrade to

B }) a write lock (ws != 0L), We
return false; change the state and exit |

} finally { s1.unlock(stamp); } —
}

Javaspecialists.eu

}

From Smile to Tears: Emotional StampedLock

Code Idiom For Conditional Change

public boolean changeStateIfEquals(oldStatel, oldState2,
newStatel,

long stamp = sl.readlLock();
try 1

while (statel == oldStatel && state2 == oldState’?2 ..
long writeStamp = sl.tryConvertloWriteLock(stamp) ;

if (writeStamp != OL) {
stamp = writeStamp;
statel = newStatel;
return true;

} else {
sl.unlockRead(stamp) ;
stamp = sl.writeLock();

}

}
return false;
} finally { sl.unlock(stamp); }

state’

~ Else, we explicitly |

"
<

-

newState’l,

DA

61y 1Y — ZIngey] ZuldH €102 ®

newState’l;

|
|

PaAIaSay SIY

N
N

From Smile to Tears: Emotional StampedLock

Code Idiom For Conditional Change

public boolean changeStatelfEquals(oldStatel, oldState2, ...
newStatel, newState?2, ...) {
long stamp = sl.readlLock();
try {
while (statel == oldStatel && state?2 == oldState2 ...) {
long writeStamp = sl.tryConvertloWriteLock(stamp) ;
1f (writeStamp != OL) {

stamp = writeStamp; If the state is not the |
statel = newStatel:; state2 = newS d |
return true: expected state, we .
} else { unlock and exit method

sl.unlockRead(stamp) ; L
stamp = sl. wr1teLockLl=—_______——4

1 - This could happen if betweenthe %
} | ‘unlockRead() and the writeLock() |

return false;

b Finally { sl.unlock(stq another thread changed the values |

pansasay syby ||y — Zinge)y zulaH £10Z ©

Jovosp"qclallsts.ou

N
Q

From Smile to Tears: Emotional StampedLock

Code Idiom For Conditional Change

public boolean changeStatelfEqual s(J Because we hOld the write lock,
the tryConvertToWriteLock() |
1339 {Stamp Py - 0ck O method will succeed

while (statel == oldStatel && state2 =xt o1dState2 AN {
long writeStamp = sl. tryConvertToWr1teLock(stamp);
1f (writeStamp != OL) {
stamp = writeStamp;
statel = newStatel; state2 = newStatel;

return true;
} else {

s1.unTockRead(stamp) ; e N T B
stamp = s1.writeLock(): We update thestatdex1t

¥

paa1asay sIybIy 11V — ZIngey] ZuidH £10Z 6

Jovasp“qclollsts.cu

¥

return false;
} finally { sl.unlock(stamp); }

}

"
N

From Smile to Tears: Emotional StampedLock

Code Idiom For Conditional Change

public boolean changeStateIfEquals(oldStatel, oldState2, ...
newStatel, newState2, ...) {
long stamp = sl.readlLock();
try {
while (statel == oldStatel && state?2 == oldState2 ...) {
long writeStamp = sl.tryConvertToWriteLock(stamp) ;
1f (writeStamp != OL) {
stamp = writeStamp;
statel = newStatel; state2 = newStatel;
return true;
} else {
sl.unlockRead(stamp) ;
stamp = sl.writeLock();
}
}
return false;
} finally { sl.unlock(stamp); }

}

s
5
S
o

pani1asay s)ybiy ||y — Zingey] zuidH €102 ©@

N
Ol

From Smile to Tears: Emotional StampedLock

Applying To Our Point Class

public boolean movelfAt(double oldX, double oldY,
double newX, double newY) {
long stamp = sl.readlLock();
try {
while (x == oldX && y == oldY) {
long writeStamp = sl.tryConvertToWriteLock(stamp) ;
1f (writeStamp != OL) {
stamp = writeStamp;
X = hewX; Yy = nhewyY;
return true;
} else {
sl.unlockRead(stamp) ;
stamp = sl.writeLock();

¥

pani1asay s)ybiy ||y — Zingey] zuidH €102 ©@

Jovaspb\clollm.ou

¥

return false;
} finally { sl.unlock(stamp); }

}

46

From Smile tb ‘Tear;:__Emotlonal StampedLock

Performance StampedlLock & RWLock

® We researched ReentrantReadWriteLock in 2008

— Discovered serious starvation of writers (exclusive lock) in Java

— And also some starvation of readers in Java 6

: — http://lwww.javaspecialists.eu/archive/lssue165.htmi

® StampedLock released to concurrency-interest list 12th Oct 2012

— Worse writer starvation than in the ReentrantReadWriteLock

— Missed signals could cause StampedLock to deadlock

® Revision 1.35 released 28t Jan 2013

— Changed to use an explicit call to loadFence()

pansasay sybry ||y — zZingey] zulaH £10Z @

— Writers do not get starved anymore
— Works correctly

N
~N

From Smile to Tears: Emotional StampedLock

Performance StampedlLock & RWLock

® In our test, we used

— lambda-8-b75-linux-x64-28 jan_ 2013.tar.gz
— Two CPUs, 4 Cores each, no hyperthreading

- e 2x4x1
E — Ubuntu 9.10
= — 64-bit

— Intel(R) Core(TM) i7 CPU 920 @ 2.67GHz
e L1-Cache: 256KiB, internal write-through instruction

pani1asay s)ybiy ||y — Zingey] zuidH €102 ©@

« L2-Cache: 1MiB, internal write-through unified
e L3-Cache: 8MiB, internal write-back unified

— JavaSpecialists.eu server

* Never breaks a sweat delivering newsletters

N
Qo

From Smile to Tears: Emotional StampedLock

Conversions To Pessimistic Reads

® In our experiment, reads had to be converted to
pessimistic reads less than 10% of the time

— And in most cases, less than 1%

® This means the optimistic read worked most of the
time

cialists.eu

pani1asay s)ybiy ||y — Zingey] zuidH €102 ©@

Javasg

49

How Much Faster s StampedlLock
Than ReentrantReadWriteLock?

® With a single thread

(&)

4.43x] Read Speedup
] Write Speedup

AN

(6%

pansasay sybry || — zinge)] zuidH £10Z ©

X faster than ReadWriteLock

Jovosp"qclallsts.ou

o

O
S

From Smile to Tears: Emotional StampedLock

How Much Faster Is StampedLock
Than ReentrantReadWriteLock

® With four threads

1000

@
N
=
@
T
®.

S

N
2
E*é 353X I Read Speedup [

_ B Write Speedup LU

Q |
o £ 100 —64x >
= = 3
< S 11X 12X &
- o0 10 >
S ; -
2 S 2X X 1.2x S

& 9x
S 8 3
8 X S
0

R=4,W=0 R=3,W=1 R=2,W=2 R=1,W=3 R=0,W=4

Mvasﬁchtlsts.ou

O
SR\

From Smile to Tears: Emotional StampedLock

How Much Faster Is StampedLock
Than ReentrantReadWriteLock?

® With sixteen threads

This demonstrates the \

yb1y 11V — ZIngey| ZuIdH £10Z ©

10000 starvation probiem on readers| |
in RWLock
1000 N
100

I Read Speedup
] Write Speedup

Rk

=16,W=0 R=13,W=3 R=10,W=6 R=7,W=9 R=4,W=12 R=1,W=15

x faster than ReadWritelLock
(LY VELS

52

From Smile to Tears: Emotional StampedLock

Reader Throughput With StampedLock

] Read Throughput
] Expected (linear to n cores)

10000

pansasay siybry |1y — zinge)] zuieH €102 ©

©
©
(&)
(dp)
o
=
-
> =
o @
“ S 1000
- =
o 5
QO s
a o))
-
- S
-
>
[F 400 -

1 2 4 38 16

Number of Reader Threads (no Writers)

93

From Smile to Tears: Emotional StampedLock

Writer Throughput With StampedLock

2.0

I
I Write Throughput

1.5 -

1.0

Throughput (Linear Scale)

‘rosp"qclollm.ou

Note: Linear | 1 5 4 3 16
Scale

throughput 1‘ Number of Writer Threads (no Readers)

.\"

pansasay siybiy |1V — ZInge)] ZuidH £10Z 6

Jovosp"qclallsts.ou

Mixed Reader Throughput StampedLock

Throughput (Logarithmic Scale)

From Smile to Tears: Emotional StampedLock

10000

1000 -

” “"mlllln

100

—
o

] Read Throughput

161514131211109 8 7 6 5 4 3 2 1
Number of Reader Threads (16 - n Writers)

&)
N

pansasay syby ||y — Zinge)y zulaH £10Z ©

95

From Smile to Tears: Emotional StampedLock

Mixed Reader Throughput RWLock

ReentrantReadWritelLock

100

B Read Throughput

10
1|||||||||IIIII|

pansasay sybiy |Iv — zynqey] zuldH £1.0Z ©

)
‘©
O
7
2
=
3 =
e T
: :
= d 0.1 =
3 E - Shows
> o
2 s 00 Reader |
= £ 000t U Starvation |
2 161514131211109 8 7 6 5 4 3 2 1 w 1m ’
Number of Reader Threads (16 - n Writers) RWLock |

From Smile to Tears: Emotional StampedLock 56

. . @)
Conclusion Of Performance Analysisg

® StampedLock performed very well in all our tests
— Much faster than ReentrantReadWritelLock

® Offers a way to do optimistic locking in Java

:

® Good idioms have a big impact on the performance

pansasay sybny ||y — Zinge)y] zuleH ¢

Q

r

- O
- 0O
249 =
O

~N

e

paasasay siyby ||y — zinge)] zuieH €102 ®

B sovospecioists o

O
Qo

From Smile to Tears: Emotional StampedLock

ldioms With Lambdas

® Java 8 lambdas allow us to define a structure of a
method, leaving the details of what to call over to
users

2 — A bit like the "Template Method™ Design Pattern

- L1st<String> students = new ArraylList<>();
Collections.addAll1(students, "Anton", "Heinz", "John");
J|students.forEach((s) -> System.out.println(s.toUpperCase()));

ANTON
HEINZ
JOHN

PaAISSSY SIYDIY IV — Z)nge)] zuisH €102 ©

=
L

L ambdaFAQ.org

® Edited by Maurice Naftalin

— Are lambda expressions objects?

— Why are lambda expressions so-called?
— Why are lambda expressions being added to Java?
— Where is the Java Collections Framework going?

— Why are Stream operations not defined directly on
Collection?

— etc.

pansasay sybiy Iy

http://www.lambdafaq.org/are-lambda-expressions-objects/
http://www.lambdafaq.org/are-lambda-expressions-objects/
http://www.lambdafaq.org/why-are-lambda-expressions-so-called/
http://www.lambdafaq.org/why-are-lambda-expressions-so-called/
http://www.lambdafaq.org/why-are-lambda-expressions-being-added-to-java/
http://www.lambdafaq.org/why-are-lambda-expressions-being-added-to-java/
http://www.lambdafaq.org/where-is-the-java-collections-framework-going/
http://www.lambdafaq.org/where-is-the-java-collections-framework-going/
http://www.lambdafaq.org/why-are-stream-operations-not-defined-directly-on-collection/
http://www.lambdafaq.org/why-are-stream-operations-not-defined-directly-on-collection/
http://www.lambdafaq.org/why-are-stream-operations-not-defined-directly-on-collection/
http://www.lambdafaq.org/why-are-stream-operations-not-defined-directly-on-collection/

@)
S

From Smile to Tears: Emotional StampedLock

ldioms For Using StampedLock

import java.util.concurrent.locks.*;
import java.util.function.¥*;

public class LambdaStampedLock extends StampedLock {
public void writeLock(Runnable writelob) {

pani1asay s)ybiy ||y — Zingey] zuidH €102 ©@

3 long stamp = writelLock();
% try {
B writeJob.run(); 1s1.writeLock(
o } finally { O o> 1
g;' sl.unlockWrite(stamp) ; ¥ += deltaX:
o) } y += deltaY;
L, ¥
) ;

@)}
=

From Smile to Tears: Emotional StampedLock

ldioms For Using StampedLock

public Object optimisticRead(Supplier<?> supplier) {
long stamp = tryOptimisticRead();
Object result = supplier.get();
if (lvalidate(stamp)) {
stamp = readLock();

=
® try {
- result = supplier.get();
= } finally {
'% unlockRead(stamp);
}

}
return result; |double[] xy = (double[])1s1.optimisticRead(!
() -> new double[]{x, Yy}

);
return Math.hypot(xy[0], xy[1l]);

nasay sybry |y — Znge)] zuiaH £1L0Z ©

-

E

&)
N

From Smile to Tears: Emotional StampedLock

ldioms For Using StampedLock

public static boolean conditionalWrite(
BooleanSupplier condition, Runnable action) {
long stamp = readlLock();
try {
while (condition.getAsBoolean()) {
long writeStamp = tryConvertToWritelLock(stamp);
1if (writeStamp !'= 0) {
action.run();
stamp = writeStamp;
return true;
} else {
unlockRead(stamp) ;
stamp = writeLock();

} return Isl.conditionalWrite(
; () > x == oldX && y == oldY,

| foturn false; O = {x = newki y = newY; J

unlock(stamp) ;) ;
¥

pani1asay s)ybiy ||y — Zingey] zuidH €102 ©@

Jovaspb\clollm.ou

o))
QW

B _ i
A . E 3
“~g
' ri
{
¢

_t

paasasay siyby ||y — zinge)] zuieH €102 ®

.Javqgggglgrl‘llﬂé.eu

@)
N

From Smile to Tears: Emotional StampedLock

Nonblocking Point

® Instead of relying on synchronizers, use non-
blocking algorithm

— Might create additional objects
 But a contended StampedLock will also create objects

pani1asay s)ybiy ||y — Zingey] zuidH €102 ©@

Jovaspb\clollm.ou

cialists.eu

Javasg

&)}
O

From Smile to Tears: Emotional StampedLock

Store State Inside AtomicReference

public class PointNonblocking {
public static final double[] INITIAL = new double[]{0, O};

private final AtomicReference<double[]> xy =
new AtomicReference<>(INITIAL);

public void move(double deltaX, double deltaY) {
double[] current, next;

pani1asay s)ybiy ||y — Zingey] zuidH €102 ©@

do {
current = xy.get(Q;
double x = current[0];
double y = current[1];
next = new double[]{x + deltaX, y + deltaY};

} while (!xy.compareAndSet(current, next));

¥

Jovasp"qclallm.ou

@)}
@)}

From Smile to Tears: Emotional StampedLock

Reading Does Not Create Objects

public double distanceFromOrigin() 1{
double[] current = xy.get(Q);
double x = current[0];
double y = current[1];
return Math.hypot(x, y);

¥

pansasay siybry |1y — zinge)] zuieH €102 ©

@)}
~N

From Smile to Tears: Emotional StampedLock

Conditional Write Can Make Objects

public boolean moveIfAt(double oldX, double oldY,
double newX, double newY) {

double[] current, next;
do {

current = xy.get();

double x = current[0];

double y = current[1];

1f (x !'=oldX || y !'= oldY) {

return false;

}

next = new double[]{newX, newY};
} while (!xy.compareAndSet(current, next));
return true;

¥

cialists.eu

pani1asay s)ybiy ||y — Zingey] zuidH €102 ©@

E

:L\

Which |s Fastest?

C StampedLock, synchronized or non-blocking?

68

— Depends on how you measure

— For multiple readers, lock-free is probably faster

e http://mechanical-sympathy.blogspot.de/2013/08/lock-
based-vs-lock-free-concurrent.html

— But synchronized might be faster than
both in some cases

pansasay siybiy ||y — zinge)] zuieH €102 ®

— Depends on how you use it

y 40
L.
&
' N
1Y
4
X
N -
.
e e
1

* (Great consultant answer :-))

Where to next?

.Javqgggggyls’»‘tg.eu

@)
O

paasasay siyby ||y — zinge)] zuieH €102 ®

e
y)
i C
- -

~N
S

.

" »
>
LA

The Art Of Multiprocessor Programming

® Herlihy & Shavit THE ART

ral

— Theoretical book on how 7

_ MULTIPROCESSOR
things work "under the hood™ PROGRAMMING

0

— Good as background reading

5
g
;
:

Maurice Herlihy & Nir Shavit ™H.1¢

~N
-

From Smile to Tears: Emotional StampedLock

JSR 166

® http:/Igee.cs.oswego.edu/

® Concurrency-Interest mailing list

— Usage patterns and bug reports on Phaser and
StampedLock are always welcome on the list

pansasay sybiy |Iv — zynqey] zuldH £1.0Z ©

Mvasﬁchtlsts.ou

~
N

From Smile to Tears: Emotional StampedLock

Mechanical Sympathy - Martin Thompson

® Mailing list
— mechanical-sympathy@googlegroups.com

® Blog
— http://Imechanical-sympathy.blogspot.com

paa1asay sIybIy 11V — ZIngey] ZuidH £10Z 6

Jovasp“qclollsts.cu

QW

From Smile to Tea ,ﬁ*jémotlonal StampedLock 4

Heinz Kabutz (heinz@kabutz.net)

® The Java Specialists' Newsletter

— Subscribe today:
 http://www.javaspecialists.eu

1 ® Questions?

pansasay sIybiy ||y — Zingey] ZuidH €102 ®

~N
N

___From Smile to Tears: Emotional StampedLock
// .

—

" From Smile To Tears:
- Emotional StampedLock

heinz@javaspecialists.eu

pansasay sybiy ||y — zingey] zuieH €102 @

Questions?

~ The Java Specialists’' Newsletter

~N
O

_From Smile to Tears: Emotional StampedLock

pansasay syb1Y || — zInge)] zZuldH £10Z ©

